Technical Report

Investigation of Different Constituent Encoders in a Turbo-code
Scheme for Reduced Decoder Complexity

Submitted to:

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Submitted by:

Dr. S.C. Kwatra, Principal Investigator
Peter Curry, Graduate Research Assistant

Department of Electrical Engineering
College of Engineering
The University of Toledo
Toledo, Ohio 43606

Report No. DTVI-55

May, 1998

This report contains part of the work performed under NASA grant NAG3-1718
during the period September 1995 to April 1996. The research was performed as part of

the Masters thesis requirement of Mr. Peter Curry

S.C. Kwatra

Principal Investigator

An Abstract of
Investigation of Different Constituent Encoders in a Turbo-Code System for
Reduced Complexity Decoding

Peter Curry

Submitted in partial fulfillment of
the requirements of the
Master of Science Degree
The University of Toledo
May 1998

A large number of papers have been published attempting to give some
analytical basis for the performance of Turbo-codes. It has been shown that
performance improves with increased interleaver length. Also procedures have
been given to pick the best constituent recursive systematic convolutional codes
(RSCC’s). However testing by computer simulation is still required to verify
these results. This thesis begins by describing the encoding and decoding
schemes used. Next simulation results on several memory 4 RSCC’s are shown.
It is found that the best BER performance at low Ey/N, is not given by the
RSCC’s that were found using the analytic techniques given so far. Next the
results are given from simulations using a smaller memory RSCC for one of the
constituent encoders. Significant reduction in decoding complexity is obtained
with minimal loss in performance. Simulation results are then given for a rate 1/3
Turbo-code with the result that this code performed as well as a rate ¥ Turbo-

code as measured by the distance from their respective Shannon limits. Finally

the results of simulations where an inaccurate noise variance measurement was

il

used are given. From this it is observed that Turbo-decoding is fairly stable with

regard to noise variance measurement.

i

Acknowledgments

I would like to thank my advisor, Dr. S. C. Kwatra for his patience. I
would also like to thank Dr. J. Kim and Mr. R.E Jones for serving on my
committee. I would also like to thank NASA for funding me and making this

research possible. Finally I would like to thank my friends and family.

Abstract

Table of Contents

Acknowledgments

Table of Contents

List of Figures

1. Introduction

2. Overview of Encoding Components
2.1 General Overview
2.2 Recursive Systematic Convolutional Codes
2.3 Interleavers

3. Soft Output Decoding

3.1

32

33

34

3.5

3.6

4 Results

4.1

42

4.3

44

4.5

Overview of Soft Decoding

MAP Algorithm

Example of the MAP Algorithm

Decoding of Turbo-codes

Method 1 for the Decoding of Turbo-codes

Method 2 for the Decoding of Turbo-codes

Interleaver Implementation
Memory 4 Generators
Lowering Decoder Complexity
Lower Rate Turbo-codes

Inaccurate Noise Variance Measurement

1

v

Vil

14

18

18

18

23

28

29

33

35

37

38

45

49

50

4.6 Further Research
References

Appendix A. Properties of Nonrandom Block Interleavers
Appendix B. Flowchart

Appendix C. Program Listing

vi

51

53

55

59

60

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4.
Figure 2.2.1
Figure 2.2.2
Figure 2.2.3
Figure 2.2.4
Figure 2.2.5
Figure 3.4.1
Figure 3.4.2
Figure 3.6.1
Figure 4.2.1
Figure 4.2.2
Figure 4.2.3
Figure 4.2 .4
Figure 4.2.5
Figure 4.2.6
Figure 4.2.7
Figure 4.2.8

Figure 4.3.1

List of Figures

The Limits For Reliable Communications

A Serial Concatenated Scheme

The General Encoding Scheme for Turbo-codes
BER vs Ey/N, for Uncoded BPSK

A Non-Systematic Convolutional Encoder

A Generator Matrix

The Input-Output State Diagram of the NSCC
A Recursive Systematic Convolutional Encoder
Input-Output State Diagram of the RSCC

The General (Sub-Optimal) Decoding Scheme
One Optimal Decoding Structure

A Second Optimal Decoding Method

A 27_31 Generating Circuit

Performance for 27_31 Code Turbo-code Scheme

A 23_35 Generating Circuit

Performance for 23_35 Code Turbo-code Scheme

A 31_27 Generating Circuit

Performance for 31_27 Code Turbo-code Scheme

A 37_21 Generating Circuit

Performance for 37_21 Code Turbo-code Scheme

A 7_5 Generating Circuit

vil

88

10

11

12

30

34

41

41

42

43

43

46

Figure 4.3.2
Figure 4.3.3
Figure 4.3.4
Figure 4.3.5
Figure 4.3.6
Figure 4.4

Figure 4.5.1
Figure 4.5.2

Figure A.1

BER Curve for a Concatenated 15_17 Generating Circuit

46

Closeup BER for a Concatenated 15_17 Generating Circuit 47

A 15_17 Generating Circuit

BER Curve for a Concatenated 7_5 Generating Circuit
Closeup BER for a Concatenated 7_5 Generating Circuit
Performance of 27_31 RSCC’s Without Puncturing
Underestimating Variance

Overestimating Variance

An Input Pattern That Will Cause a Global FC

viii

47

50

51

58

Chapter 1

Introduction

Low bit error rates (BER) in high noise environments have required the
use of very complex channel coding and decoding schemes. According to
Shannon’s theorem very long random codes can approach Shannon’s limit [1].
This limit is defined as zero probability of bit error (usually this is taken as BER

of 107 or some other convenient figure of merit) when the Ey/N, is larger than

1.5 .

0.5 pd
) /
©
£
= 0
=4
0
“ o5 et

/

I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Code Rate

Figure 1.1 The Limits for Reliable Communication

a given value which depends on the rate of the code. Ew/N, required for given
rates is shown in Figure 1.1 assuming no intersymbol interference, and minimum
Nyquist bandwidth [2]. However, long random codes are, in general, extremely
difficult to decode. In order to decrease the complexity of the decoder several
approaches have been tried. A typical practice, introduced by Forney [3], is the
concatenation of more than one code. This method is composed of coding the
information bits by an outer encoder and inputting the output of the outer encoder
into a second inner encoder which is then output to the channel. The bits can be
decoded by decoding the output of the channel by the inner decoder first and using
that as an input to the outer decoder. A typical example of this would be a Reed
Solomon code as an outer code with a convolutional code as the inner code as

shown in Figure 1.2.

sourcel Reed- (;onvolu-
> Solomon > tional
Encoder Encoder
Channel
sink | |Reed- Convolu-
< Solomon < tional <
Decoder Decoder

Figure 1.2 A Serial Concatenated Scheme

Recently a new concatenation scheme has been proposed. This scheme is
called parallel concatenation. Parallel concatenation is done by encoding
information streams that are linked through a pseudo-random interleaver as shown
in Figure 1.3. Delays are not shown in the figure. The input to the interleaver 1s
presented as blocks of bits. The process of using paralle! concatenation in
conjunction with recursive systematic convolution codes (RSCC’s) has produced
codes, nicknamed Turbo-codes [4], that have phenomenal error correcting
capacity at very low bit energy to noise variance ratios (Ex/N,). For example the
rate ¥2 code (accomplished by puncturing every other bit from each RSCC output)
in [4] was found to have a BER of 10 at Ey/N, of only .7 dB. This is a savings of
about 9 dB over uncoded BPSK which is shown in Figure 1.4, but more
importantly it is within .7 dB of the Shannon limit for a rate %2 code (see Figure
1.1).

dk dk

Pik
—® Rscc1 [

\ 4
Interleaver

P2x
—» Rscc2 *

Figure 1.3 The General Encoding Scheme for Turbo-codes.

While these codes have very good BER performance there are some difficulties
with these codes. One of the problems is the fact that the decoding of these codes
requires soft outputs. The optimal decoding algorithm, the Maximum A posteriori
Probability (MAP) algorithm is very complex due to the number of operations

needed and the amount

Turbo-code Scheme

BER
o

10' 1 - 1 1 1 1 1 1 1 i
0 1 2 3 4 5 6 7 8 9 10

Eb/No (in dB)

Figure 1.4 BER vs Ey/N, for Uncoded BPSK
of memory required. There are simpler decoders, such as the Soft OQutput Viterbi
Algorithm (SOVA) and the Max-Log MAP, but they are both sub-optimal

algorithms.
One of the objectives of this research is to investigate the effects of using

different generators for the RSCC’s on the performance of the Turbo-codes. This

will be done using computer simulation. While several analytical methods have
been proposed for choosing proper RSCC’s in the Turbo-code system they have
not all been tested by computer simulation. Computer simulation is necessary to
confirm results that were given by analytical methods. Also it has been seen that
concatenating a smaller memory convolutional encoder with a memory four
convolutional code does not degrade performance levels very much, while
decoding is less complicated [S]. The performance of these schemes will be
evaluated. In cases where bandwidth is not a concern but power is limited, lower
rate encoding schemes can be of use. Simulations will be run to determine if the
performance of a lower rate (1/3) Turbo-code scheme generates good results. The
results of the rate 1/3 code will be compared with the rate ¥ Turbo-code scheme.
Also the effects of inaccurate measurement of noise variance on Turbo-code
performance will be investigated (the MAP decoder requires an estimate of noise
variance). This is done to see how stable the Turbo-decoding process is in the
case when noise variance is measured inaccurately.

This thesis will begin by describing the general encoding scheme. Then
detailed descriptio;ls of the encoding components of Turbo-codes including
descriptions of the constuction of RSCC’s and the interleavers, as well as
motivations for their use, will be given. Next will be the description of the
decoding process beginning with a description of the soft output decoders
(specifically the MAP algorithm) and then describing the Turbo-decoding process.

Finally the research findings will be presented.

Chapter 2
Overview of Encoding Components
2.1 General Overview

Most Turbo-codes are encoded by concatenating two RSCC’s through an
interleaver. A block of message bits is encoded with a RSCC. That same block of
message bits is interleaved by a pseudo-random interleaver and encoded with
another RSCC (see Fig. 1.3). The systematic information is sent only once, not
separately with each RSCC.

The reasons that this channel coding scheme works so well are that it
combines three different areas that help to produce good codes [6]. The three
areas are:

- combining several codes by concatenation

- maximum use of channel information (i.e. soft decoding)

random like distribution of codewords
The purpose of this chapter is to show how Turbo-codes use the
RSCC’s and the interleaver to mimic random codes in some ways. Soft decoding
algorithms will be discussed in chapter 3.
It was shown by Shannon that large random codes can decode near the
Shannon limit. This suggests that good codes should have a distance distribution

that mimics that of random coding rather than simply having a large minimum

distance. The weight distribution histogram of a fixed length random block code
would be very close to a binomial distribution. It would have very few low
weight or high weight codewords, and the majority of the codewords would have
a weight very close to the middle of the weight spectrum. Designing such codes
with enough structure to decode with a reasonable amount of complexity and
arbitrary parameters (i.e. length, rate) is not possible yet. However Turbo-codes
are able to generate a weight distribution that has been shown to have a
distribution with a shape similar to that of random codes. The following sections
will detail how each component of the Turbo-encoder allows Turbo-codes to

mimic random codes.

2.2 Recursive Systematic Convolution Codes

This section will begin with an example of a non-systematic convolutional
code (_NSCC). From there it is shown how to construct RSCC’s and some of the
properties of RSCC’s are given.

The structural sequences of channel coding have been classified into two
main categories, block and convolutional encoding. Block coding is performed
by accepting a given number of bits (k) and using algebraic rules to form a
number of parity bits (p). When the information is transmitted the parity bits are
tacked onto the information bits. The total rate of the code, k/n, is given as the

number of information bits (k) divided by the total number of bits sent (k+p).

Usually convolutional encoding is done by accepting bits serially, one bit
at a time through m tapped delay lines (a more general procedure is shown in [7D.
This means that the output bits will not only depend on the current input bit but
will also depend on at least the previous m input bits. An (n, k = 1, m)
convolutional code can be implemented that accepts 1 input bit at a time, has n
output linear sequential circuits with input memory of order m. An example of a
(2, 1, 2) nonsystematic encoder is shown in Figure 2.2.1. One way to think about
the output of the convolutional encoder is to consider the output to an impulse

when the encoder is in the zero state. The impulse

_,EA9<___
DA
—

9‘— Yok

>

+)’u(

Figure 2.2.1 A Non-Systematic Convolutional Encoder

response of the system can be used to obtain a semi-infinite generator matrix due
to the linearity of the response. The generator matrix, G, of the circuit shown is
given in Figure 2.2.2. Notice that the output of the first row is the impulse
response of the system (1 1 10 11). The generator bits are grouped in pairs
of two. The first number is from yx and the second number is from y,. One

way to generate the output for a given input sequence, {dy}, is to multiply the row

to

vector by the generator matrix, remembering that addition is done modulo

Thus, if d = [1 0 1] then the output is given by

11 10 11 00 00O
dG=|[101J00 11 10 11| 00 =111 10 00 10 11]
00 00 11 10} 11
11 10 11 00 0O
G= 00 11 10 11 060
00 00 11 10 11

Figure 2.2.2 A Generator Matrix

That the output of a convolutional encoder is dependant not only on the
current input but also the previous m inputs, suggests that we can gain insights
into the properties of a convolutional encoder with a state diagram. A state
diagram for the encoding circuit in Figure 2.2.1 is shown in Figure 2.2.3. This
diagram can be important for determining some of the distance properties of
convolutional codes. These distance properties can give information about how
well a given code will perform. The state diagram shows the states (0, 1, 2, 3),
the inputs and the outputs they cause. For example if the encoder was in state 2
and a 1 was received, the next state would be state three and the output at that

time would be (0 1).

10

0/00 1/10

Figure 2.2.3 The Input-Output State Diagram of the NSCC

Usually the most important distance measure for convolutional codes is the
minimum free distance. This is defined as [7]
dfree = min{d(v’,v’"):u’#u’’}

where v’ and v’’ are the codewords corresponding to the input vectors u’ and u’’
respectively (dge. is not related to {dx} which was defined as the input sequence).
This means that dg. is the minimum distance between any two codewords in the
code. Another way of saying this is that the free distance of a code is the number
of bits that need to be changed in a given word for the output to be a different
codeword. This is important for determining the error correcting ability of a code.

The example given is for a NSCC. However RSCC’s have been
discovered which perform better than the best NSCC'’s at any SNR for high code
rate (rate > 2/3) [8]. These encoders are constructed from NSCC’s by using a
feedback loop and setting one of the outputs, yi, equal to the input, d;. Since the

output of these codes is separated into the systematic portion of the output and the

11

other portion, the other portion will be called the parity sequence and the parity
bit at time k will be denoted by px. An example of a RSCC is shown in Figure
2.2.4 with the state diagram of this encoder given in Figure 2.2.5.

The generator given in Figure 2.2.4 is called a 5_7 RSCC. The Sand 7
represent octal numbers that are converted to binary to represent the connections
in a generator circuit. The first number will be called the FB (feedback)
connection, while the second will be called the FF (feedforward) connection.

It was claimed that these codes perform better than the NSCC’s at high code rates.
A high code rate is accomplished by puncturing the outputs of the convolutional
encoder. This means systematically deleting some of the output bits. While
puncturing can be done in different ways, it is usually done by eliminating every
other bit out of the non-systematic portion (px in Figure 2.2.4) and will be done
this way for the remainder of this thesis. For this punctured code the rate would
then be 2/3 (1 information bit transmitted for every 1% bits transmitted). For

Turbo-codes the overall rate has generally been %2 by using two punctured

« DD
_*g}__pk

Figure 2.2.4 A Recursive Systematic Convolutional Encoder

1/1 0/1

0/0 1/0 0/0 1/0

111

0/1

Figure 2.2.5 Input-Output State Diagram of the RSCC
RSCC'’s and transmitting the systematic portion only once.

The reason that RSCC'’s are important is that they have been found to give
the greatest gain when used as the parallel concatenated codes [2] (it has been
shown that NSCC’s give almost no gain when constructed as Turbo-codes). One
of the ways that they can be seen to be different from the NSCC'’s is that a finite
weight input sequence can be mapped into an infinite weight output sequence.
This is shown by the impulse response of the encoder of Figure 2.2.4 which is pg
=[1110110110110 ...]. Notice that after the first parity bit the
sequence repeats itself with a period of 3 bits. In general the impulse response of
a well designed memory m RSCC will repeat itself after 2™ — 1 bits. A
nonrecursive NSCC maps a finite weight input sequence into a finite weight
output sequence. Since one of the goals is to make the codewords have a random

distribution and since the output weight of a nonrecursive NSCC is somewhat

13

correlated with its’ input weight, using NSCC’s would not be as good for
designing random like codes.

[6] showed that for most input sequences the output weight of RSCC'’s has
the same distribution as that of a random code sequence. While most input
sequences will have an output weight that approximates that of random sequences
there are input sequences that cause low output weights. For example, there are
sequences with as few as two ones that will cause the encoder to go from the zero
state to a nonzero state and back and generate low weight codewords. For the
encoder of Figure 2.2.4 a sequence that would do this isdy=[1 0010000 ...].
The parity output for this sequence is pxy=[1 1110000 ...]. This means that
any sequence that is a shifted version of the one mentioned will have an output
weight of 6. These codewords are examples of the codewords that cause the
codes to perform poorly. The object of encoding of Turbo-codes through an
interleaver is to “boost” the low output weight codewords that would be generated
by a single RSCC. In other words what the interleaver is designed to do is to
force most of those input words that produce low weight output codewords
through RSCC1 (i.e. few ones in pjx) to produce higher weight codewords
through RSCC2 (px).

When decoding convolutional codes it is desirable to force the encoder
into a known final state to protect the final few information bits. RSCC’s cannot
be driven to the all zero state by adding a specific number of zeros (this can be
seen in the state diagram, Figure 2.2.5) as can be done with NSCC’s. Some

simple, sub-optimal solutions to this are to fail to protect the final bits sent in a

14

block by appending no bits onto the end. This way neither the final state of the
encoder or the final bits are known. Another choice that can be made is to force
the encoder into the all zero state by a proper choice of m (where m is the
encoder memory) end bits. This allows the decoder to know that it is in the all
zero state while not knowing the final m bits.

Choosing the best RSCC generators for Turbo-codes has been done by
several methods. One method that has been used to determine the best generators
is using the encoder with the best distance properties [8]. Another method is
given in [9]. This method involves using a primitive polynomial as the FB
connection and determining the FF connections based on the resulting BER. That

paper also lists several good generators.

2.3 Interleavers

The use of a good interleaver is the most important factor in achieving the
best possible performance of Turbo-codes [10]. The interleaver permutes the
information bits in such a way as to make the output of RSCC2 (from Figure 1.3)
appear to be independent of the information sequence and therefore random-like,
but to have a structure that permits decoding. While the mechanics of what
exactly makes up the best psuedo-random interleavers is not completely
understood, and the mathematics needed to analyze them is somewhat difficult,
there have been some investigations that give heuristic ideas as to why random
interleavers work [10]. Also it has been found that good interleavers for Turbo-

codes are not hard to find [11]. This section will discuss a procedure for creating

15

a pseudo-random interleaver and also show why nonrandom block interleavers do
not work well in Turbo-codes [10].

In this discussion nonrandom block interleavers will refer to a structure
that reads bits in through the rows and out by the columns. Pseudo-random and
random interleavers will be referred to when discussing block interleavers that
read bits in through the rows but are read out using some other method.

Interleavers had been used prior to Turbo-codes in order to break up
patterns of errors in bursty channels. To do this a nonrandom block interleaver
would often be used. As mentioned, in this type of interleaver the bits would be
read in by rows and read out by columns. In this way a sequence of the form

do, di, dz, d3, d4, ds, dg, d7, ds, ds, d10, d11, di2, di3, dis, dis
that was read into a four by four square matrix would be read out as

do, d4, ds, di2, d1, ds, dg, di3, d2, de, di0, di4, d3, d7, d11, dys
Although this sequence has been mixed up, it does not appear random to the
channel. It can be seen that if a sequence is correlated then this interleaving
procedure will change the correlation in a uniform way.

One procedure for creating a pseudo-random interleaver is given in [10].
The procedure is as follows: for an M*M memory (where M is a power of 2) the
bits to be interleaved are read into a square matrix. If i and j are the addresses of
the row and column for writing, respectively (with the first row and column being
labeled row 0 and column O respectively) and i, and j, are the row and column for
reading, respectively then the rule for reading is

kr=M2+1)31i+j)) modM

16

E=(+])) mod 4
jir=[PE)*(§+1)]-1mod M
P(E) is a function of E that is relatively prime with M and is a function of the row
address (i + j) mod 4. P(E) is given as follows:
P0) =17; P(1) =37, P(2) = 19; P(3) =29;
P(4) =41; P(5) =23; P(6) = 13; P =7,
(The only difference between this interleaver algorithm and the one used in our
simulations is that the row address E is taken modulus 8 for a 256x256
interleaver). The sequence
do, d, d, d3, d4, ds, de, d7, ds, dg, dio, di1, di2, d13, dy4, dis
will now be interleaved by this random interleaver. The output is given by
do, d13, ds, d7, d12, dy, de, d3, d1o. ds, da, dis, da, dy, dya, di
While the output from this interleaved pattern is not random per se, it does appear,
at first glance, to be more “random” than the previous interleaver. However it is
difficult to say how random an interleaver looks, especially for small blocks.
Right now the only way to test whether an interleaver is random enough in a
Turbo-code scheme is to run simulations with it. Deinterleaving is the inverse
function of interleaving.

The reason that random interleavers work in Turbo-coding schemes is
because they better “imitate” a random sequence to the channel. Since the goal of
Turbo-codes is to create somewhat random codewords (as given by their output
weight distribution) for a given input codeword, it can be seen that an output

sequence that is only distantly related to its’ input would be desirable. This means

17

that the output of RSCC2, px from Figure 1.3 should be nearly independent from

the sequence dy.

Some analysis of the distance properties of nonrandom block interleaved
sequences is given in Appendix 1. It is shown that nonrandom block interleavers
can produce output sequences with high weights for input sequences with weights
2 or 3. But for input sequences of weight 4 this is not necessarily the case. This

motivates the need for random interleavers.

Chapter 3

Soft Output Decodin

3.1 Overview of Soft Decoding

One of the factors that makes Turbo-codes work well was discussed in the
previous chapter (approximating random codes). In this chapter it is shown how
all the information from the channel is used. To do this soft output decoding is
needed. This allows information to be passed from one decoder to another
without loss of information. This requires a more complicated decoding system
than is usually used with convolutional codes. Several algorithms have been
proposed to generate the soft decisions. The Maximum-A-posteriori Probability
(MAP) algorithm [12] is the optimal algorithm and will be discussed extensively
in section 3.2. The Max-Log MAP [13], a simplification of the MAP algorithm,
and the Soft Outputi Viterbi Algorithm (SOVA) [14] will also be discussed briefly.
After an example of the MAP algorithm is given in section 3.3, the procedure for

decoding Turbo-codes will be discussed in sections 3.4-3.6.

3.2 MAP Algorithm
The MAP algorithm is the optimal algorithm for the minimization of

probability of bit error. The algorithm can also generate the probabilities of a bit

18

19

being 1 or 0. This is important because it is used to give a reliability value by
using the log-likelihood value of a bit dy, A(dy) = log(Pr(dy = 1)/Pr(dx = 0)).
Pr(dy= 1) is the probability that the decoded bit di=1(=0,1). This A(dy) is used
to determine a soft output value. The sign of A(di) determines whether the bitis a
zero or one while the magnitude determines the reliability of the decoded bit. The
log function is the natural logarithm (base e). The notation used in this derivation
is as follows. Rklkz is the received sequence from states at time k! to time k2.
This is an encoded sequence that has been corrupted by noise. R," is the entire
received sequence from time 1 to time f. Ry is the received information at time
unit k. Sy is the state of the encoder at time unit k. The value of the state at time
K, Sk, is denoted by m, while the value of the state at time k-1, Si.;, is denoted by
m’ M is the total number of states. Hence m, m’ =0, 1, ..., M-1. It will be
assumed that the encoder starts in the zero state.

As stated, the MAP algorithm gives the decision for every bit (i.e. O or 1)
and a reliability value for the bit (higher reliability’s being more reliable) given
that all bits have been received. Mathematically this can be done by finding the
probabilities of all state transitions. To do this we find

Pr{Sx, =m’ Sx=mIR,") (3.2.1)
Since this form is more difficult to work with, it is converted to an equivalent
form

Pr{Si;=m’Sc=m; R, }/Pr{ R, } (3.2.2)

20

The equivalence between (3.2.1) and (3.2.2) is given by Bayes rule. Since Pr{le}
is a constant for a given received sequence only the numerator of (3.2.2) needs to
be found. The following notation is introduced to allow for ease of exposition.
o(m,m’) = Pr{Si.; =m’ Sy =m; R;") (3.2.3)
The probability that a bit is zero or one can be determined from (3.2.3) as:

Pride=i}= D o,(m.m) (3.2.4)
(m'.m)eA, (i)

where Ax(i) is the set of state transitions that cause the output i at time k.

The essential idea of decoding a bit is to split the probability that a state
transition has occurred into three portions. The first part is developed from the
received information prior to the time of the state transition. The second portion
is formed from the received information after the state transition. The third
portion is based on the received information at the time of the state transition.

This can be expressed symbolically by introducing the following symbols.

o4(m) = Pr{Syx = m, R,*} (3.2.5)
Bi(m) = Pr{ Ru1" 1 Sy = m} (3.2.6)
Yi(Ri,m,m’) = Pr{dy =i, Sx = m, R¢ | Sy, = m’) (3.2.7)

Assuming that any state transition is described by a Markov process the
value of 6x(m,m’) is given by
Ox(m,m’) = 0.1(m) * ¥(Ry, m, m) * By(m). (3.2.8)
What (3.2.8) has shown is that the transition probability, 6x(m,m’), can be

broken up into those determined by the first k-1 transitions, the final (f - k)

transitions and the transition determined at time k. This is important because the

21

transitions determined by ax(m) and Bx(m) can be calculated recursively with the

following formulas [12]

1
ox(m)= 3. Y ¥, (Re,m’,m)* e (m") (3.2.9)
m' =0
1
Bim)= 3.3 ¥, (Rpyy,m’m)* B, (m) (3.2.10)
m' =0

Sometimes the Yi(Rgx, m’, m) values are not probability values but are distribution
values (as will be seen in the example). The oy(m) and Bx(m) will then need to be

normalized as follows.

1
2 Z Y.(R,,m’ m)*a,_ (m)
O(m) = —2—=2 (3.2.11)

Zzi Y.(R,,m’ m)*a,_,(m’)

m m =0

1
ZZ Yi(Rkn’m”m)*ﬂku(m,)
Bi(m) = == (3.2.12)

ST H R % (m)

m' m i=0

Since the probabilities at the first state are known (the encoder begins in the zero

state) the oy(m) can be calculated recursively from 1 to f. As soon as all the

ox(m) are calculated, the By(m) can be calculated from the final bit back to the
first.

With this information ox(m,m’) can be determined. Knowing ox(m,m’)

allows for the calculation of the log likelihood value, A(dy) which is

22

ZZ V(R m’,m)* B, (my*xa,_,(m")
A(dy) = Log 2= (3.2.13)
EEYO(RI(' m)* B (m)xa,_ (m’)

The essence of the algorithm is the use of probabilities to decode bits as
opposed to the Viterbi algorithm, which uses metric values. The MAP algorithm,
given the probabilities that the encoder is in a state at time zero, and the received
channel values, calculates the probabilities of the encoder being in any state at any
time recursively. All of these ox(m) have to be stored for all values of k, and m
(for the decoder that achieved BER 107 in [3] at Ex/N, .7 dB, k and m are
approximately 65000 and 16 respectively). A similar process is used to find the
Bx(m) after the entire sequence has been received. With these parameters the
probabilities that the encoder was in any state can be derived and, along with the

received channel value, is used to find the log likelihood probability.

3.3 Example of the MAP Algorithm

A simple example of the use of the MAP algorithm will now be given.
The example will be done using a (5, 7) octal generator (Figure 2.2.4). For this
generator, parity bit outputs and state transitions are given by the state transition
diagram of Figure 2.2.5.

Ten random bits have been generated and the output of the encoder is

data bits {di}: [0010001000]
parity bits {px}: [0011100011]

23

Turbo-codes are usually punctured to increase the rate of the total code. When
this is done certain bits are deleted according to a given rule. Every other parity
bit is not sent in this example. The information is sent over an AWGN channel.
To make decoding simpler to understand the received bits are transformed by a
linear transformation by the modulator, therefore the inputs to the decoder are xx =
((2*di - 1) + noise) and yx = ((2*px —1) + noise). The bits which have been
deleted by puncturing are inserted as zeros. This is what happened to our received
data with noise variance of 1.6:

{xk}: [-1.04 -1.14 1.73-148-02-149 -53 -1.71 -1.94 -2.37]

{yx}: [-70 O -23 0 1780 -59 0 1.53 0]
Errors have occurred in the 7th column of the systematic bits and the third column
of the parity bits.

The decoding procedure can now be implemented. The first step is to

calculate og(m) = Pr{Sy = m, R,k} for all states and times. Knowing that the
encoder began in the zero state allows us to know that 0p(0) = 1 while op(m) =0
for m not equal to 0. From this and the received values the rest of the ok(m) can

be calculated. They are

k=0 12 3 4 5 6 7 8 9 10

state 3 [0 0 02 03 8 .12 03 33 .19 .63 .02
state 2 [0 02.07 83 .11 03 77 18 36 .02 .32]
state 1 [0 0 00 .11 06 79 .12 36 32 33 .63]
state 0 [1 9891 03 03 06 .08 .13 .14 02 .02]

24

From column k = 0 to column k = 1 the probability that the encoder went
to state O at the time after the first bit had arrived is the sum of the probabilities of
transitioning to state O from any previous state that could possibly come to state 0.
The only two states that can arrive at state 0 (from the state diagram, Figure 2.2.5)
are states zero and one. Therefore the probability of being in state O at time 1
(after the first systematic bit and parity bit arrive) is

[Pr{S¢=0,R;'} * Pr{d,=0,5,=0,R; | S¢=0}] + [Pr{Se=1.R;'} * Pr{d\=1,S,=0,R, |
So=1}] = 0o(0) * Y0(R1,0,0) + 0to(1) * Y1(R1,0,1).
Since the probability of being in state 1 at time zero (0p(1)) is zero this

leaves only the first portion (co(0) * Y0(R,0,0)) to be considered. Using the fact

that the information was sent over a Gaussian channel y(R,0,0) is calculated by
the following formula:
Yi(Ryx ,m,m’) = constant * exp[-(xk - b*(i,m’m))*/N,] * exp[-(yx - bP(i,m’,m))*/N,]
(3.3.1) for each pair of states which allow a transition.. I chose to leave
the constant as one and normalize the o and values after o and B are calculated
at any state (this is done by equation 3.2.11 automatically). b'(i,m’,m) is the
systematic bit output at the modulator when there is a transition from state m’ to
state m. Likewise bP(i,m’m) is the parity bit output from the modulator when
there is a transition from state m’ to state m. As an example, if it is assumed that
the encoder has gone from state 3 to state 1 at time k, then dx would be 0 and p;
would be 1. Since the modulator transforms these outputs by the linear

transformation given above b’(i=0m’=3, m=1)=-1 while b’(i=0,m’=3,m =

25

1) = 1. N, is the noise variance (in this case the noise variance is 1.6). X, is the
systematic bit received at time k = 1 which is -1.04. vy, is the parity bit that has
been received at time 1. This is -.70. This means the transition probability
(Yo(R1,0,0)) is
exp[-(-1.04 - (-1))* Nol* exp[-(-.7 - (-1))*/ Ng] =.99 * .95 = .98
Similarly the transition from state O to state 2 (Y1(R),2, 0)) is
exp[-(-1.04 - (+1))% No]* expl-(-.7 - (+1))* / No} =.09 * .19 =.02
The rest of the o (m) can be calculated in the same way.

Bx(m) are calculated in a similar way. However after the final bit has
arrived the final state of the encoder is not known. For this reason Bjo(m) can

either be initialized as o,0(m) or given equal weighting as (1/M). I have chosen to

use the former method. Bx(m) is then

k = 0 1 2 3 4 5 6 7 8 9 10
state 3 [.23 0.17 .10 .07 .26 44 23 .01 34 .63 .02]
state 2 [.16 .10 .58 .26 44 24 26 33 .66 .03 .32}
state 1 [.20 .51 18 43 .06 26 44 .64 00 .33 .63]
state 0 [.41 .22 .19 24 23 06 06 .02 .00 .19 .02}

Using Bo(0) for an example of how to calculate the By(m) will now be
done. Pg(0) is the probability that the sequence after time 9 (i.e. the last bit)

would arrive given that the state is known to be state zero at that time. For this

case we know that the sequence could only go to state O or to state 2. Bo(0) is

(B10(0) * Y0(R10,0,0) + (B10o(2) * Y1(R10,2,0)).

26

To calculate Yo(R10,0,0) and 71(R10.2,0) we use the same method as before.

Yo(R10,0,0) = exp[-(-2.37 - (-1))No 1 * exp[-(0 - (-1))/No] = .33 * .55

001 * .55

Yi(R10,0,2) = exp[-(-2.37 - 1)/No] * exp[-(0 - 1)’/No]
So that Bo(0) is .02 * .18+ .32 * .005. At this point you may notice that the
sum of these does not come to .19. This is because the y have not been
normalized. This is why after all By have been calculated in the way that was just
described the values are normalized (this is from 3.2.12). Continuing this way
through for each of the received bits generates all the values of Bx(m) for all k and
m although Py can be discarded after it has been used for generating the output
value at time k if lack of memory 1s a problem.

This information (o and Bx) has been generated to obtain the probability

values of each transition so that the probabilities that each bit was eithera 1 or 0
can be calculated using (3.2.4). Because we only need the ratio of the
probabilities to generate the log likelihood value we will not need to find the
probability per se. As an example I will find logarithm of the ratio of the
probability the first 'bit was a one to the probability the first bit was a zero.

The only transitions that can occur with the arrival of the first bit are the
transition from state O to state O (which generates a 0) and the transition from state
0 to state 2 (which generates a 1). Therefore the probability that this output is a
one is given by 01(0,2) = 0(0) * v1(R1,0,2) * B1(2). The probability that the
output is zero is 6¢(0,0) = 0p(0) * Y(R;1,0,0) * B1(0). Taking the ratio of these

values and then the logarithm gives a value of -4.67. Since the sign of the bit is

27

negative it has been decoded correctly. The reliability value of 4.67 can give
information about the actual probability of a bit being 1 or 0 if that is desired.
Here is the complete decoded sequence.

[-4.67 22 5.13 -6.15 -377 -6.15 166 -60 -7.1 -7.8]

As can seen by comparing this with the original sequence the sequence has been
decoded correctly and the certainty of each bit can be measured relative to the
others.

The disadvantages of this system are now apparent. There is a very large
amount of memory needed for decoding (storage of). Also the complexity of
the decoder is apparent from the equations needed to calculate the parameters
(large numbers of multiplies and adds).

The Soft Output Viterbi Algorithm [14] and the Log-MAP algorithm [13]
will now be discussed breifly.

The SOVA is generally similar to the standard Viterbi Algorithm in that it
compares metric values at each node of the trellis to decide which path is the
maximum likelihood path (hence the minimum metric). The SOVA at each node
will also compare the path with the minimum valued metric with the path with the
second best metric, and use that information to update a reliability value of all bits
which are not the same in the two paths. This requires only comparisons of
metrics and table lookups, which are less time consuming than the MAP
algorithm. Also only one pass through the information is required as opposed to

the MAP algorithm, which requires a forward and a backward pass.

28

The Max-Log MAP algorithm is a simplification of the MAP algorithm
that results from taking the log of the probability distribution of the transitions (Y)
and replacing them by approximations. This algorithm is a better approximation

than the SOVA but not as good as the MAP algorithm.

3.4 Decoding of Turbo-codes

The general scheme for the decoding is shown in Figure 3.4.1. As soon as
the sequence is received the parity bits are demultiplexed. A soft output decoder
is used with the inputs being the systematic information and the output of the first
RSCC (dx and pix after modulation and having noise added, producing xx and yx
respectively). The output of this decoder is an estimate of the information
sequence and will be called Al. This estimate is then interleaved according to the
pseudorandom interleaver that was used at the encoding stage. This allows the
new estimate Al to be used along with the parity bits from the second recursive
convolutional code in a second soft output decoder. This produces a new estimate
of the (interleaved) information bits. However, because the first decoder did not
use all the information available (specifically it did not use the second set of parity
bits, yz) the performance can be improved by adding a feedback path from the
output of the second soft output decoder to the first decoder as shown in Figure

3.4.2.

29

Xk Al
p| INTERLEAVE |y .{ DEINTERLEAVE {9

DEC2

DECI1

vy

Yik

Y2k

Figure 3.4.1 The General (Suboptimal) Turbo-decoding Structure

One important consideration when feeding information from the second
decoder back to the first is that the information sent back to the DEC1 must be
information that is independent of the information generated by DECI in the first
place. It should be information that was generated by y». If the information sent
back to DEC1 was already generated by DECI there would be positive feedback
and the decoding could become unstable. There are two methods for feeding
back information. The first method is from [4] and the second from [5]. The
first method uses slightly different decoding stuctures for DEC1 and DEC2. The

second method has the same decoding structure for both decoding blocks.

3.5 Method 1 for the Decoding of Turbo-codes
The first method is achieved by considering the output of the first MAP

decoder (DEC1) which is

30

3 v(Rm m)x B, (m)*a, (m)
Al(dy) = log2—= (3.5.1)

>3 Yo(Rem',m)* B, (m) %2y, (m)

DEINTERLEAVE

% peey [P NECEAYE Y ey
—]-P —
Yik
DEINTERLEAVE + —|-
Y

Figure 3.4.2 One Optimal Decoding Scheme

In the first decoder (in Fig 3.4.2), the sequence Ry consists of the channel values
Xk and vy Bcca.luse the encoder 1is systemnatic the transition probability
P(xkldg=1,54=m,S\.;= m’) tn ¥i(Rx, m’, m) (from 3.3.1) is independent of the state
value of the encoder. Being independent of states means that the summations
over m and m’ (the current and previous states) will have no effect on it. What

this means is that this can be factored out in the numerator and denominator of

(3.5.1). Now

31

22 hOwm m* B mxam) gy

- m_m +lo (3.5.2)
AlG)= log , e, 1d, =0)
22}'0(3’1;:"" ym)* B, (m)* e, (m’)
This can be expressed more concisely as
Al(dy) = Wiy + (2/07) * X (3.5.3)

where Wy is the logarithm of the quotient of the summations in (3.5.2). Notice

that the y term in (3.5.2) depends on yiy, not the systematic term X. So W =
{A1(dy) | xx = 0}. The o and P terms are still built with systematic terms as well
as the parity information. The x is multiplied by (2/0’2) in (3.5.2) because xy is
Gaussian with mean +/- 1 and variance o>. This shows that Wik 1s the
information produced using the structure of RSCCT1 (it is the information output
from DEC1 that depends on memory).

Now Al(dy) will act as the systematic information in the input to second

decoder. The output of the second decoder will be

A2(dx) = W + f(A1(dy)) (3.5.4)
with Wy defined similarly to Wi in (3.5.3). f(*) is some function of Al(dy).

W2 is a function of the sequence yx and uses a priori information from the

sequence {A1(dx)}. Because of interleaving between decoders Wy is only weakly

correlated with xy and yi (the hope is that it is independent of {Al(dy)}). This

means that a new decoding process can take place with xy, y;x and using W, as a

32

priori information in DECI after the first decoding iteration has occurred. [4] sets
zx = W and assumes that it can be approximated by a Gaussian random variable
with a variance of (')'z2 (the variance of 012 must be estimated at every iteration).
After the first iteration the output of DEC1 will be determined by Xy, yix. and zx

and will be equal to

Al(dy) = Wi + (2/67) * x¢ + (2/677) * 7,
(3.5.5)
In (3.5.5) the W)y term has used Xy, Y1k, and zx to build o and B (as the a priori
information). Now since z; has been built by DEC2 it cannot be reused as input
information for DEC2. This means that (2/0‘12) * 7, must be subtracted off after

decoding has been done. The decoder structure is shown in Figure 3.4.2.

3.6 Method 2 for the Decoding of Turbo-codes

The first method of decoding Turbo-codes involved passing the
information to the‘second decoder that was obtained from both the systematic
sequence and the first parity sequence. The second method involves sending the
systematic sequence directly (after interleaving) and also using the a priori
information directly. The output of either of the MAP decoders in this method is

split into three parts in a manner similar to (3.5.5). The result is

33

22 Y (e, m’m)* B (m)* o, (m”) p(x, 1d, =1)
A(dy) = log-2—= +log p(xk Id‘ o)
227’0()’&’”””")*)61‘ (m)*a,_,(m’) S

+ L(dk)

(3.6.1)
L(d,) is set to zero for the first iteration of the first decoder. After that L(dy) is the
a priori information generated by the previous decoder (i.e. the log of the
summation of products). This means L(dy) is generated by the parity information
from the previous decoder. The systematic information is interleaved (or
deinterleaved) and passed to the next decoder separately. The use of L(dy) in
decoding comes in considering the value of
Yi(Xk, Yik» L(dy), m’, m) = Pr(xildy = 1,8k = m,Sx.1 = m)* Pr(yx | dx = 1,S¢=m,Sx.1 =
m’)* Pr(dy =1 1Sy =m,S.; = m)*Pr{S¢ = ml Sy, = m’,L(dx)} (3.6.2)
Pr(di = 1 ISy = m,Sy.; = m’) is either zero or one depending on whether there is an
output i associated with a state transition from m’ to m. With Pr{Sy = ml Sx,; =
m’,L(dy)} the use is made of the information from the previous decoder. L(dy)
was generated as the log of the summation products from the previous decoder.
This means that L(dy) is equal to log(Pr(dy=1)/Pr(dx=0)) using information
generated by the previous decoder. By exponentiating L(dx) and using the fact

that Pr(dy=1) + Pr(dy=0) = 1 its’ value can be given as follows

Lidy)

Pr{Sx=ml Sy, = m",L(dy)} =] ¢ (3.6.3)

L(d
+ et

if the state transition from m’ to m determines a 1; and

34

L(dy)

Pr{Sk =ml Sk-| = m’,L(dk)} = 1—-1—_+_—:l'_'m‘ (364)

if the state transition from m’ to m determines a 0. In plain language what this
gives is the probability that a bit is one or zero depending on the information
generated from the previous decoder. The decoding scheme used in this case is
shown in Figure 3.6.1. The advantage of this method is that no variance estimate
is required. For this reason I used this decoding method in my decoder.

With either method the number of iterations can be determined by

knowing the number of iteration needed to achieve the BER required.

DEINTERLEAVE I
N -
INTERLEAVE

Yix —9 peci P —»{ DEC2
Xk _|->

p| INTERLEAVE |

DEINTERLEAVE
+

Yx

Figure 3.6.1 The Second Optimal Decoding Method

Chapter 4

Results

In Turbo-coding there are several components (i.c. random interleavers,
RSCC’s, and decoders), each with different parameters. Even separately these
components can be difficult to analyze. Several papers have helped in the
separate analysis of both the interleavers and the RSCC’s [8],[11]. One of the
important results claimed in [11] is that the interleaver size is the most important
factor in determining the performance of Turbo-codes and that BER performance
is inversely proportional to the size of the interleaver for large enough, random
enough interleavers. This is important because it allows for testing of other
components somewhat independently of the interleaver. For this reason only one
interleaver was tested. The implementation of the interleaver is given in section
4.1.

The MAP decoding algorithm is used in the simulation. The reason for
this 1s that this will give the best possible performance. Also simpler, more
memory efficient versions of the MAP algorithm are becoming available [15].
The second decoding method, described in 3.6, was used because the variance at

the output of the second decoder did not need to be estimated.

35

36

In the simulations there were no zero bits tacked on to the end of each
block and the final state of the encoder was unknown. This did not seem to
degrade performance. Most of the decoding was done for a maximum of 18
iterations. This is because it was done this way in [4] and is considered a
benchmark for my research.

The first requirement was to test the memory 4 generators to determine
which produce the best BER curves. Memory 4 codes are generally used because
they can generate very good performance. Higher memory generators do not
generally add much performance gain and the decoding process is much more
complex (remember that decoding complexity and memory requirements increase
by more than a factor of 2 for every memory element added). Section 4.2 will
give the simulation results of memory 4 RSCC’s concatenated in a Turbo-code
scheme.

The next consideration is the reduction of decoder complexity while
maintaining good performance levels by reducing the memory for RSCC1 and
using the standard memory four RSCC2. Because the decoding complexity of
each (MAP) decoder grows exponentially with encoder memory the complexity
of a Turbo-code with memory 4 RSCC2 and memory 3 RSCC1 is approximately
75% of the complexity (ignoring the interleaving and deinterleaving operations,
which in any case are just reading and writing operations). For memory 4 RSCC2
and memory 2 RSCC1 the complexity is about 5/8 of the standard. This analysis
assumes the same number of iterations for both decoding structures being

compared. If the performance is not degraded significantly then the savings in

37

decoding complexity can be a significant factor. Section 4.3 will give the
simulation results of the concatenation of 2 different RSCC’s, one with a smaller
memory.

The next idea that was considered was observing the effect of reducing the
rate of the Turbo-codes by sending all parity bits and rejecting puncturing. Using
lower rate codes can result in power savings at the expense of extra bandwidth. In
cases when power is limited it is important to know how well Turbo-codes can
perform without puncturing. Section 4.4 will give the simulation results of arate
1/3 Turbo-code.

Section 4.5 will give the simulation results of a Turbo-code where noise
variance was measured inaccurately. This is done because the MAP algorithm
requires an estimate of the noise variance. If Turbo-codes were to decode poorly
because of a small error in the noise variance estimate then they would be of
almost no practical use. These simulation results will show how much
performance is degraded by some poor estimates.

Of course this research has not closed the book on Turbo-codes. Section

4.6 will give ideas for further research.

4.1 Interleaver Implementation

The interleaver algorithm used in this simulation is implemented as
follows [10]: for an M*M memory (where M is 256, hence there are 65536

bits/block) the bits to be interleaved are read into a square matrix. If i and j are

38

the addresses of the line and column for writing, respectively (with the first line
and column being labeled line 0 and column O respectively) and i, and j, are the
line and column for reading respectively, then the rule for reading is

ir=(M2+1)i+j) modM

E=(@G+])) mod 8

jr=[PE)* (+)] -1 mod M
where P(E) is a function of E that is relatively prime with M and is a function of
the line address (i + j) mod 8

P(E) is given as follows:
P0) =17, P(1) =37; P(2)=19; P(3) =29;

P4) =41, P(5) =23; P(6) = 13; P(7) =17,

4.2 Memory 4 Generators

5 different generators have been considered. The first is a 27_31 encoder
which is shown in Figure 4.2.1 with results shown in Figure 4.2.2. The 27_31
circuit had the best BER curves after 18 iterations. For this reason iterations were
continued beyond I8 to determine how well it would perform. This code decoded
below BER 107 at .65 dB after 28 iterations. Although the number of iterations is
very large, it may be worth it if power is a constraint in a given application. The
BER of the 27_31 code after 18 iterations was used as the reference against other
Turbo-encoders tested. The dashed line in the BER curves is the result of the

27_31 after 18 iterations.

39

Next a 23_35 encoder was tested [8]. This encoder is shown in Figure 4.2.3 with
results shown in Figure 4.2.4. This RSCC has the best distance properties. It can
be seen that BER curves are not as good as the 27_31 code after 18 iterations.
However the BER after 1 and 2 iterations is better than the 27_31 code. What this
seems to show is that this encoder may perform better asymtotically at higher
Ew/No.

The next two generators were given in [9]. This required the FB portion

of the encoding circuit to be a primitive polynomial while the FF portion of the
circuit should be chosen to minimize BER using certain criterion. Two generator
polynomials given in that paper were 31_27 and 31_33 generators. Of these
two, only results of the 31_27 encoder, which is shown in Figure 4.2.5 with
results shown in Figure 4.2.6, are given. This is because the generators were
obtained by the same method and the results are similar. The BER curves of these
circuits are very similar to the BER curves obtained by the 23_35 circuit. Both
are approximately .1 dB away from the 27_31 circuit after 18 iterations at BER
10 and both of them have steeper dropoffs at higher Ep/N,.
Finally the original circuit used in [4] which was a 37_21 circuit, shown in Figure
4.2.7, was tested. Results are shown in Figure 4.2.8. This circuit performed
better than any circuit at low Ey/N, after many iterations with the exception of the
27_31 encoder.

The 37_21 RSCC and the 27_31 RSCC’s were chosen arbitrarily while the
other RSCC’s were chosen based on analytical techniques. The 23_35 RSCC was

determined based on distance properties and not on how it would perform in a

40

Turbo-code scheme. It was not necessarily expected to perform well as a Turbo-
code. However the 31_33 RSCC and the 31_27 RSCC were designed to be
optimal in a Turbo-code scheme. What this analysis has shown is that the
RSCC’s that are selected based on the analytical techniques may not perform the
best at very low Ey/N,. From the results of the simulations completed here it
appears that the best memory 4 encoder obtained so far is the 27_31 RSCC but
this does not mean that better RSCC’s will not be found. Better analytical
methods need to be found for generating good RSCC’s to remove any doubt as to

which RSCC will perform best.

41

dx
>
—PHe— =
—>
Figure 4.2.1 A 27_31 Generator Circuit
10° . ,
10.1 3 .
i 1 jteration ;
10.2 3 4
2 iterations
10"}
o]
Lu >
[s9] 4 r
10 18 iterations 3
10-5 3 1
10°}]
28 iterations]
107 ' :
0.5 1 1.5 2

Eb/No (in dB)

Figure 4.2.2 Performance for 27_31 Code Turbo-code Scheme

42

dy {
4’ e
B SU
» Pk
Figure 4.2.3 23_35 Generator Circuit
10° ¢ ' .
10"}
10° Y
RUM
o'
¥ ": .
10 i 18 iterations 3
10° . ‘
0.5 1 1.5
Eb/No (in dB)

Figure 4.2.4 Performance for 23_35 Code Turbo-code Scheme

43

% M,
g
Px
>
Figure 4.2.5 A 31_27 Generator Circuit
10° ¢ . :
10-1 3
10.2 E’ -3
E 10° 3 2 iterations 1
[e0] b]
F
10'4 3
5| , ,
10 3 18 iterations 3
3 3
. : 27 A dode After 18 lterations
10 L N
0.5 1 1.5 2
Eb/No (in dB)

Figure 4.2.6 Performance for 31_27 Code Turbo-code Scheme

d
4, e
>
—» Pk
Figure 4.2.7 A 37_21 Generator Circuit
10° . .
-1 []
10-2 3 I‘ -
2 iterations
& 10°F 4
&) F !
4 W
10 F 1| 18 iterations 5
"a
10°F !]
t |
b 27 31 Code After 18 fterations 1
-6
10 1 4
0.5 1 1.5

Eb/No (in dB)

Figure 4.2.8 Performance for 37_21 Code Turbo-code Scheme

45

4.3 Lowering Decoder Complexity

The next consideration is the reduction of decoder complexity while
maintaining good performance levels by reducing the memory for RSCC1 and
using the standard memory four RSCC2. It was shown in [11] that RSCCI
should be the encoder with reduced memory.

The smaller memory generators that were used were obtained from [8].
The 7_5 circuit is shown in Figure 4.3.1. The results of the 7_5 RSCCI1
concatenated with the 27_31 RSCC2 are shown in Figure 4.3.2. A closeup of
these results is shown in Figure 4.3.3 to highlight the differences between the
curves. The 15_17 circuit is shown in Figure 4.3.4. The results of the 15_17
RSCC1 concatenated with the 27_31 RSCC2 are shown in Figure 4.3.5. A
closeup of these results is shown in Figure 4.3.6.

As can be seen in the Figures the loss in coding gain is not very much.
For decoding at 10” the loss in power is only .12 dB and .10 dB for memory 2
and 3 RSCCI respectively concatenated with the memory 4 RSCC2. At 10™ the
difference was even less pronounced, with losses of only .07 and .04 dB. In many
cases it seems this would be a fair tradeoff given the reduced decoding
complexity. If decoding complexity is a problem the smaller memory should be

used since the difference in power savings is not significant between the two.

46

dx

é+_

Px

>

Figure 4.3.1 A 7_5 Generator Circuit

10 L L E
iteration]
0%
iterations
10°F
o }
w !
@ !
-4 i
10 ¢ ! 3
7 iterations
i 4
10 ¢ | 18 lterations 3
: 27 31 Code After 18 lterations
-6
10 . .
0.5 1 1.5 2
Eb/No (in dB)

Figure 4.3.2 BER Curve for a Concatenated 7_5 Generating Circuit

47

10.1 : T T T ¥ ¥ T ¥
-2
10 3 \
b \‘
4 ‘\\
3P \
107 F AN
o Y
w \
@ \
107k 18 iterations
10°F \ !
E \
1 27 31 Code After 18 iterations 1
10'6 ! 1 1 1 2 1 1
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Eb/No (in dB)

Figure 4.3.3 Closeup BER Curve for a Concatenated 7_5 Generating Circuit

& K»D

V. el

Px

Figure 4.3.4 A 15_17 encoder

48

10° r T y y ") ' E
107} 3
4 1 iteration b
4 \
10°} \ 1
\ 2 iterations i
» \
g 107 F \ 3
\ '
of !
10°F 1 \ 18 iterations 3
3 i E
[i]
-5 ' |
0¥ “a a
1 :
o 27 31 Code After 18 lterations
10' L 1 1 L 1 1 Y
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Eb/No

Figure 4.3.5 BER Curve for a Concatenated 15_17 Generating Circuit

-1

10 T L) ¥ T
102} S 5
E .]
\\\
- ~\\\
10°F 3
e []
w P 4
[a 8] s 4
-4 . .
10 \ 18 iterations 3
10°}
r 27 31 Code After 18 lterations
6
10 1 L 1 1
0.55 0.6 0.65 0.7 0.75 0.8

Eb/No (in dB)

Figure 4.3.6 Closeup BER Curve for a Concatenated 15_17 Generating Circuit

49

4.4 Lower Rate Turbo-codes

It was suggested in [11] that unpunctured Turbo-codes might not perform
as well as punctured Turbo-codes. To determine the validity of these claims
simulations were done on an overall rate 1/3 turbo code with results shown in
Figure 4.4. Since the Shannon limit at rate 1/3 is -.55 dB the results are very good.
They decode at only .65 dB away from the Shannon limit in only 14 iterations.
This is the same distance away from the Shannon limit as the punctured codes
after 28 iterations. The tradeoff is increased bandwidth requirements which may

not be a problem in some applications.

10 3 T T T T T 3
10"} 1
1 iteration 3
St 1
10 2 E 1
10-3 1 3
- i 2 iterations]
3 '
107k 1
.5)
10 3 7 iterations -i
of |]
10 14 iterations 1
5 Limit for Rate 1/3 Code j

10 1 L L 1 L
-1 -0.5 0 05 1 1.5 2

Eb/No (in dB)

Figure 4.4 Performance of 27_31 RSCC’s Without Puncturing.

50

4.5 Inaccurate Noise Variance Measurement

Finally the effect of inaccurate noise variance measurement on the decoder
was observed. The effect of underestimating the variance is given in Figure 4.5.1
with the results of an overestimate of the variance given in Figure 4.5.2. From
these Figures it can be seen that an error of 20% either way in the estimate of the
variance will result in approximately a .1 dB loss. Of course the worse the
estimate is, the worse the decoding performance will be. This seems to be a
reasonable amount of loss. This shows that the MAP algorithm is not terribly

unstable for inaccurate noise variance measurements.

10 E ¥ ¥ T T T T r 3
101; :

q 60%_Variance]

1(525]
103g]

o : 3
w -
o L]
10]
10°F _:
106. . Accurate Variance) 80%_lVarian<J:e 1

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Eb/No

Figure 4.5.1 Underestimating Variance

51

-1 .
1OE T p— T T T E

140%_Variance

120%_Variance

1 06 i Accurate_Variance

107 Il 1 1 1 1 Il

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Eb/No

Figure 4.5.2 Overestimating Variance

4.6 Further Research

Some of the questions about Turbo-codes that are still unanswered at this
time will now be presented, some of which were posed in [11].

It has been found that the MAP algorithm used with Turbo-codes
approaches analytical bounds given in [11] after many iterations. One question is
whether suboptimal decoding algorithms, such as the log-MAP algorithm and the
Soft Output Viterbi Algorithm (SOVA), will also converge to same levels. Also
the complexity of these algorithms versus the optimal MAP algorithm needs to be

analysed. Perhaps two of these algorithms could be used for decoding, first

52

decoder being a less complicated one for the first few iterations and the MAP
algorithm as a “clean up” type of decoder that eliminates the residual error.

While it has been shown that it is not hard to obtain a good large size
interleaver it remains to be seen whether an analytical device can be found that
will give an optimal interleaver for a given interleaver size. Also the analysis of
the optimal interleaver for a small interleaver still has not been completely solved.

Multi-dimensional Turbo-codes have also been investigated. Multi-
dimensional Turbo-codes are codes that are encoded by sending the systematic
information and sending the information through multiple interleavers to be
encoded through multiple RSCC’s

The combined modulation and coding technique, Trellis Coded
Modulation (TCM) provides good coding gain as well as bandwidth efficiency.

Combining the ideas of Turbo-codes and TCM was begun in [16].

Reference:

1. Hamming, R , Coding and Information Theory, Prentice Hall, | 986

2. D. Divsalar, S. Dolinar, R.J. McEliece, and F. Pollara, "Performance
Analysis of Turbo-codes," in Proc., IEEE MILCOM, pp. 91-6, Nov. 1995.

3. Forney, G., Concatenated Codes, M.L.T., Cambridge, MA, 1966.

4. Berrou, C., Glavieux, A. and Thitimajshima, P., i ‘*“Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo Codes," Proc. of ICC 93, pp
1064-1070.

5. Robertson, P., ‘‘Nlluminating the Structure of Code and Decoder of
Paralle] Concatenated Recursive Systematic (Turbo) Codes," Proc. of
GLOBECOM 94, San Francisco, CA, USA, Nov. 1994, pp 1298-1303.

6. Battail, G, “A Conceptual Framework for Understanding Turbo
Codes”, IEEE Journal on Selected Areas in Comm.Vol 16, No 2, Feb.1998

7. Lin,S. Costello,D, Error Control Coding: Fundamentals and
Applications, Prentice Hall 1983

8 .Thitimajshima, P., ““Recursive Convolutional Codes and Application to
Parallel concatenation,” Proc. of GLOBECOM '95, Singapore, Nov. 1995, pp.
2267-2272.

9.Benedetto, S. and Montorsi, G., “"Performance Evaluation of Parallel
Concatenated Codes," Proc. of ICC '95, Seattle, WA, USA, June 1995, pp. 663-
667.

10 .Berrou, C., et. al., “"Near Optimum Error Correcting Coding and
Decoding : Turbo-Codes,"” IEEE Trans. on Communications, pp. 1261-1271, Oct.
1996.

, pp- 737-740.

11.Benedetto, S. and Montorsi, G., “"Design of Parallel Concatenated
Convolutional Codes," IEEE Trans on Info. Theory, Nov. 1995, pp. 2273-2277.

53

12.Bahl, L, Cocke, J. Jelinek, F, and Raviv, J, *‘Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate,"” [EEE Trans. on Info. Theory.

pp. 284-287, Mar. 1974.

13.P. Robertson, E. Villebrun and P. Hoeher, “A Comparison of Optimal
and Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain”, Int.
Conf. on Commun., pp. 1009-13, 1995.

14.Hagenauer, J. and Hoeher, P., **A Viterbi Algorithm with Soft-
Decision Outputs and Its Applications,” Proc. of GLOBECOM '89, Dallas, TX.

USA, Nov. 1989, pp. 711-717.

15.Viterbi, A, “An Intuitive Justification and a Simplified Implementation
of the MAP Decoder for Convolutional Codes”, IEEE Journal on Selected Areas
in Comm.Vol 16, No 2, Feb.1998

16 S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, "Parallel
Concatenated Trellis Coded Modulation," in Proc., IEEE Int. Conf. on Cornmun.,
(May), pp. 974-8, 1996.

54

55

Appendix A
Properties of Nonrandom Block Interleavers

Some analysis of the distance properties of nonrandom block interleaved
sequences will now be given. This will show that some low weight input
sequences (i.e. input weight 2 or 3) will produce output words that have a high
output weight and who’s output weight increases for larger interleavers. This is a
good result because the goal of encoding Turbo-codes through an interleaver is to
boost the output weight for sequences that would produce a low weight codeword
through a single RSCC. However the analysis will also show that nonrandom
block interleavers produce too many low output weight codewords that are not
affected by interleaver size for input weight 4. This will show that nonrandom
block interleavers do not adequately “randomize” the output from RSCC2. This
analysis will follow Berrou closely [10]

Consider the Turbo-encoder shown in Figure 1.3. To simplify analysis and
to give some concrete numbers to observe, the RSCC generator will be a 23_35
(octal) punctured encode which is shown in Figure 4.2.3. Those sequences that
produce finite weight outputs of both RSCC’s and have a finite weight input
sequence are called global finite codewords or FC patterns. Some FC patterns
with low output weight will be shown.

Consider a large, M*M nonrandom block interleaving matrix (assuming M

is a power of 2). Information bits are read in through the rows and read out

55

56

through the columns. By assuming the matrix is filled with only a small number
of ones and the rest of it is filled with zeros the analysis is greatly simplified.
Because of the recursive nature of the codes at least 2 information bits being one
is necessary for a FC to be produced. The RSCC’s repeat every 2™ — 1 bits for an
m memory code. With d representing a systematic sequence with weight w and
pl and p2 representing the parity information generated by RSCCI and RSCC2
respectively, distance from the zero codeword of the FC is given as

distance(w) = w + distancey; (W) + distancepy(w) (A.1)
w is the weight given for the systematic portion of the output and distance (W) is
the weight given for the punctured output of RSCC1 with the input being dy.
distancepz(w) is the weight of the punctured output of RSCC2 with the input being
the interleaved version of diy. Puncturing is done by transmitting p;x only at odd
times k (k =1, 3,5, ...) and py at even times k.

For an input weight of 2, distance(2) can be given if distancep;(w) is
assumed to be generated by the minimum distance between bits that will produce
a FC (for a memory 4 encoder the distance between 2 one’s that will cause a finite
output weight is 15 because a RSCC repeats itself after 2™ —1 bits meaning that
distancep;(w) is 4). Now

distance(2) =2 + 4 + INT((15*M + 1)/4) (A.2)
The final term is generated by assuming that the (15*M +1)/2 symbols output
from RSCC2 are 1, half of the time. For the size of interleaver used in the
simulation (M = 256), distance(2)would be about 966. This shows that M is the

main factor for the output weight for large interleavers with weight 2 input

57

sequences. In fact it has been shown [11] that increasing the size of the
interleaver in a Turbo-code scheme by a factor of N will decrease the BER by a
factor of 1/N. This means that if an interleaver size of 100 bits in a Turbo-code
scheme generates BER 10” at a given Ey/N, then an interleaver size of 1000
should generate BER of 10,

For an input dy with weight 3 some of the patterns that can cause a FC can

be seen by tracing the output on the state diagram for three inputs that are one’s,
but they are not easy to catalogue. It might be assumed once again that the
distances are similar to the case of 2 1’s because the finite codeword output from
RSCC2 will still be several times M long. This means that weight 3 input
sequences will produce output weights that will increase with larger interleavers
and therefore give better performance.
For higher input weight sequences the analysis comes down to viewing the input
as the separate combination of several lower weight codewords. For example an
input of weight 4 can be viewed as an input of 2 weight 2 codewords. The
minimum output weight for input weight 4 is when global FC is interleaved with
the input at the comners of a square with 1’s on the corners (Fig. A.l1). The
minimum output weight for this is given by

d(4) =4 + 2* min{ distancep(w)} + 2*min{ distancep(w)}

=4 + 8 + 8 = 20 (A.3)
Also notice that any rectangular input pattern with weight 4, and with distances
between ones that are a multiple of 15 will cause a FC. What this example shows

is that with a block interleaver the output weight of both RSCC codes may be

58

small. The desire is to map most codewords into medium weight codewords. Itis

hoped that interleavers

10000000000000001
-1 00000000000000000
00000000000000000
fourteen
Zeros
00000000000000000
- A 10000000000000001

Figure A.1 An Input Pattern That Will Cause a Global FC

that are more random could stand a better chance of mapping those low weight
output sequences from RSCCI into higher weight output sequences of RSCC2.
What is desired when data is interleaved is the maximum scattering of data and
also the maximum amount of disorder in the interleaved data.

Some of the difficulties in determining good random interleavers are
these: How can it be determined that an interleaver that does a good job breaking
up, say w = 4 inputs like the one in Figure 2.3.2 will not create more code words
with low weights for w = 2?7 Also the complexity must be limited due to the
many times data must be interleaved and deinterleaved in a decoding operation.

For higher weight inputs analysis becomes more difficult due to the fact
that the inputs can be viewed as combinations of other patterns of codewords.
However it seems that as long as the interleaver used does not have too much
structure (i.e. a block interleaver) it should work well enough in a Turbo-code

scheme.

Appendix B
Flowcharts For Simulation Program

I

Generate data bits x

v

Encode output of
RSCC1 (o)

v

Interleave data and
Encode bv RSCC2 (p2)

\ 4

Multiply p1,p2,x by
2 subtract 1 and add
noise

v

SetL(dy) =0

L

Decode with inputs
plL.x.L(dy)

B 4

Interleave x. L(d.)

v

Decode with inputs
p2.x, L(dy)

Y

Checkerrors

Iterations = 182

Yes

59

Appendix C
Program Listing

/* Simulation Program */

/* This runs an entire simulation of a turbo coding scheme. It calls

functionsdecout (out, trans,numstates, sysreal,sysfb,parity, N). N is noise.

numbits is the number of'bits decoded per block,which should be defined in

here.In mmt.h we have all the memory allocation tricks and gasdev() which

is a gaussian random number generator. The interleavers

which are of the form interfloat(*data, M) where M is the root of the

sizeof the interleaver (square root of numbits) */

/* To run change filename to dump output to, generator polynomial, EbNo
memory and number of state */

#include <stdio.h>
#include <math.h>
#include “mmt.h"
#include "header.h"

void main(void)
{

FILE *inl;

int **gl,**g2,1i,j,k,prevstate, numbits=16384,numblocks =150;

int *state,in=0,meml=4,mem2=4,numstatesl=16,numstates2=16;
/*numstates has to be size 2”mem */

int **outl,**transl, **out2,**trans2; /* These give output and
transition information about the encoders */

int *d,numerr=0,stat,M=128,numits=18, file_num_errs[28}={0} /*must be
size numits + 10 */,**intoint, **outofint;

float N,std, *dcorrupt, *pl, *p2, *intrinsic,EbNo=.8,rate=.5,max =2;
/*rate 1s .5 because of puncturing. EbNo is in dB */

float *sysfb,**alfal, **betal;

float **intofloat, **outoffloat;

double x;
long idum(1l] = {0};

/* 1,3, ir,jr are indexes that stand for inputs to the interleaving
matrix and reading from interleaving matrix. */
inl = fopen("3127.txt","a+t"); /* this is the name of the file it

will be stored in */

/* gl and g2 are generator matrices that help create outl,out2,
transl, trans2 with prevstate, *state */

/* meml and mem2 are the memory for gl,g2. numstatesl = 2”°meml
numstates?2 = 2"mem2 */

60

61

/* d is the information bits which create dcorrupt,pl (parity bits
from the first generator), p2 (likewise for the interleaved info}
/* EbNo is given for rate 1/2. numbits is M*M */
/* The other variables are used in generating the information */
/* time to allocate memory for **all** the variables. from mmt.h */
outl = int_matrix_2d(numstatesl,2);
transl = int_matrix_2d(numstatesl,2);
out2 = int_matrix_2d(numstates2,2):
trans? = int_matrix_2d{(numstates2,2)};
state = (int *) calloc(l,sizeof(int));
d = (int *) calloc{numbits,sizeof (int));
dcorrupt = (float *) calloc{numbits,sizeof(float});
pl = (float *) calloc{numbits,sizeof(float));
p2 = (float *) calloc{numbits,sizeof(float});
intrinsic = (float *) calloc(numbits,sizeof(float));
sysfb = (float *) calloc(numbits,sizeof(float));
alfal float_matrix_2d(numstates2,numbits+1l);
betal = float_matrix_2d(numstates2,numbits+1l);
intofloat = float_matrix_2d(M,M);
outoffloat = float_matrix_2d(M,M);
intoint = int_matrix_2d(M,M);

*

outofint = int_matrix_2d(M,M); /* allocating memory */

/* converts EbNo to a noise variance */

N = (2)/((float) ({(2.0 * rate * (float) (pow(10,EbNo/10)))));

std = sqQrt(N/2);

/* printf("EbNo = %f variance = %f \n",EbNo,N/2}; */
gl=int_matrix_2d{(2,meml+1); /* allocating mem for gl */

gl[0)([(0)=1; gl[0]{1]=1; g@1[0][2]=0; gl{0]([3]=0; gl{0])[4]=1;
glf{1){0]=1; gl[1}(1)=0; gl{1l]([2]=1; gl(l}(3]1=1; gl(1)[4]=1;
g2=int_matrix_2d(2,mem2+1) ; /* allocating mem for g2 */
2[0]1{0)=1; g2(0]1[1]=1; g2[0])[2])=0; g2(0]([3)=0; g2(0][4]=1 ;
g2{1}[0]=1; g2{1}([1]=0; g2[1]([2]=1; g2(1])[3)=1:; g2(1](4]=1 ;
/* create output and transition matrices */
for(in =0;in<=1;1in++) {
for (prevstate =0;prevstate<=numstatesl-1;prevstate++) {
state[0] = prevstate;
outl [prevstate] [in]
transl [prevstate] [in]

encode (gl, in,state,meml) ;
state(0];

}

for(in =0;in<=1;in++){
for (prevstate =0;prevstate<numstates? ;prevstate++) {
*state = prevstate;
out2 [prevstate] [in]
trans2 [prevstate] {in]

encode (g2, in, state,mem2) ;
*state;

H

}
)

/********************* START SIMULATION *******************t***********/

for (k=0; k<numblocks; k++) {

for(i=0;i<numbits;i++) { /* making info bits */
d(i] = (int) (uniform()+.5) ;
dcorrupt(i] = 2 * ((float) (df{i])))-1 + std*gasdev(idum) ;

}

for(i=0;i<numbits;i++) (sysfb(i]=0;}

stat = 0;

for(i=0;i<numbits;i++) { /* making pl bits */

62

pl{il = ((float) (outl[stat]{d[i]]))*2 -1 + std*gasdev(idum) ;
stat = transl[stat][d[i]];
) .
for(i=0;i<=numbits-1;i++) if(i%2 != 0){pl(i] = 0.0;} /* puncturing
pl */ .)
interint (d,M, intoint, outofint); /* interleave to make p2 bits
*/
stat = 0;
for(i=0;i<=numbits-1;i++){

p2[i]l = ((float) (out2(stat])[d[i]l]))*2-1 + std*gasdev (idum) ;
stat = trans2[stat](d(il};

}

for(i=0;i<=numbits-1;i++) 1if(i%2!=1){ p2[i] = 0.0;} /*
puncturing p2 */

deinterint (d,M, intoint, outofint);

for (i=0;i<=numbits-1;i++){ /* truncate to prevent overflow */
if (dcorrupt{i]>max) {dcorrupt[i]=max;}
if (dcorrupt{i]<-max) {dcorrupt(i]=-max;}
if(plli}l>max){pl{i}=max;}
if(plli}<-max)} {pli{il=-max;}
if(p2{i]>max){p2[i]=max;)
if(p2({i]<-max) (p2[i)=-max;}

}

numerr= checkerr(d,dcorrupt,numbits); /* see how many errors there
are originally */

file_num_errs[0] += numerr;

printf (" number of errors for %d bits after 0 iterations is %d
\n",numbits, numerr) ;

printf (" error percentage = %f
\n", ((float)numerr)/ ((float)numbits)) ;
for(i=1;i<=numits;i++) { /* turbo decoding process useing process from

Robertsons paper */
decoutl (numbits, outl, transl, numstatesl, dcorrupt,sysfb,pl,N,alfal, betal);
/*first decoder uses pl to build info. Output of decoder is in sysfb */
for(j=0;j<numbits;j++){ intrinsic{j] = sysfbljl;} /* stores
output of first decoder for errorchecking purposes */
interfloat (sysfb,M, intofloat,outoffloat); /* interleave inputs to
dec2 */ :
interfloat (dcorrupt,M, intofloat, outoffloat);
decoutl (numbits,out2, trans2,numstates2,dcorrupt,sysfb,p2,N,alfal, bet
al);
/* output of dec2 is built by p2. Again output of this decoder
is in sysfb*/
deinterfloat (sysfb,M, intofloat,outoffloat);
deinterfloat (dcorrupt,M, intofloat,outoffloat);

for (j=0;j<numbits;j++){ intrinsic(j] = intrinsic[j] + sysfbl[j]
+ (2/(N))*dcorrupt[j];}

numerr=checkerr (d, intrinsic,numbits);/* checking number of
errors */

if (numerr == 0){i=numits+1;}

file_num errs([i] += numerr;
printf (“number of errors for %d bits after %d iterations is %d
\n",numbits, i, numerr) ;

63

printf (" error percentage = %f
\n", ((float)numerr)/((float)numbits));

}
}
/* print results to a file */
fprintf(inl,"gl is ");
fprintf (inl, "\n");
fprintf(inl, "¥d %4 %d %d %d \n%d %d %3 %4
%d",gl[ol[0],91[0][l],gl[0][2],91(0][3],91[0][4],91[11[0],91[1][11,91[11[2
1,91[11[3),91([11([4});
fprintf (inl, "\n\n");
fprintf(inl, *g2 is \n");
fprintf(inl, "%d %d %4 %4 %d \n%d %¥d %d %d
%d",g2[01{0],g2([0](1]1,g2[0)[2),g2[0]([3],g2(0])[4]),g2[1][0],g2[1]([1],g2([1](2
1,g2(11([31,92[1]1(4])):
fprintf(inl, "\n \n ");
fprintf (inl, "Eb/No is %f \n",EbNo);
fprintf(inl, "number of blocks is %d \n",numblocks);
fprintf(inl, "number of bits/block is %d \n",numbits);
for(i=0;i<=numits;i++) {
fprintf(inl, *number of errors for %d iterations is %4 BER = %f
\n",i,file_num_errs(i],
((float) (file_num_errs([i]))/ ({float) (numblocks*numbits)));
}
fclose(inl);
}
/* MAP decoding function. */
/* function returns the estimate in sysfb */
void decoutl (int numbits,int **out,int **trans, int numstates, float
*sysreal, float *sysfb, float *parity,float N, float **alfa,float **beta) (
float bsysreal[2],bpar{2].bfb[2],templ, temp2,mz=0, probzero, probone;
int i,3.,k,1,m; /* indexs */
/* alfa and beta follow bahl et.al. *'73 */
/* bpar, bfb, and bsysreal are components of gamma. it is done this way to
save processing time */
/* probone and probzero are temporary variables to get log likelihood
value*/
for(i=0;i<numstates;i++){ /* initialize alfa, beta */
for (j=0;j<numbits;j++) {

alfali](3] = O;
betafil[3] = 0;
}
}
alfa[0][0] = 1.0; /* initialising alfa */

/* computes all alfa’s */
for(i=0;i<numbits;i++)

bsysreal[0] = exp(-{(sysreall[i] + 1)*(sysreal[i] =+ 1))/N); /*
components for gamma */
bsysreal(l] = exp(-((sysrealli] - 1)*(sysreal(i] - 1))/N);
bpar[0] = exp(-((parityl[i] + 1)*{(parity([i] + 1))/N);
bpar[l] = exp(-{((parity[i] - 1)*(parity[i) - 1))/N);
bfb[l] = (exp(sysfbl[i]))/(l+exp(sysfbli]));
bfb(0] = 1-bfb[l];
templ = 0;
temp2 = 0;

for (m=0;m<numstates;m++) {

for(1l=0;1<=1;1++){
templ:alfa[m][i]*bsysreal[l]*bfb[l]*bpar{out[m][1]1;
alfa[trans[m] [1])][i+1] += templ;
temp2 += templ;
}

} /* calculates alfa for the next i */

for (m=0;m<numstates;m++) {
alfa[m][i+1l]} = alfa[m][i+l)/temp2; /* normalize */
}
} /* alfa is done */

/* initialize beta at the last time */
for (1i=0; i<numstates;i++) {
beta[i] [numbits] = 1.0/ ((float) (numstates)) ;
}
for (i=numbits;i>0;i--){ /* recursively calculate beta */
bsysreal[0] = exp(-{(sysreal[i-1] + 1)*(sysreal{i-1] + 1))/N}; /*
components for gamma */
bsysreal[l] = exp(-((sysreal[i-1] - 1)*(sysreal[i-1] - 1))/N);

bpar([0] = exp(-{((parity[i-1] + 1)*(parity[i-1] + 1)})/N);
bpar(l] = exp(-{(parity{i-1] - 1)*(parity[i-1] - 1))/N):
bfb{1l] = (exp(sysfb[i-1]))/{l+exp(sysfbl{i-11));

bfb[0] = 1-bfb([1l];

templ = 0;

temp2 = 0;

for (m=0;m<numstates;m++) {
for(1=0;1<=1;1++){
templ =
betaltrans[m] {1]][i])*bsysreal{l]*bfb{l]*bpar{out[m][1]];
beta{m] [i-1]+=templ;
temp2 += templ;
}
} /* calculates beta for the next i */

for (m=0; m<numstates;m++) {

beta[m] [i-1] = beta{m][i-1])/temp2; /* normalize */
}
} /* beta is done */
/* now to put it together to get approximation of output */
/* and put it in sysfb */
for(1=0;i< numbits;i++)
bpar{0] = exp(-((parity({i) + 1)*(parityl[i] + 1))/N); /*
components for gamma */
bpar(l] = exp(-((parity{i] - 1)*(parity[i] - 1))/N);
probzero = 0;
probone = 0;
for (m=0;m<numstates;m++) { /* go through all the states */
for(3=0;j<=1;j++){
1£(3==0){

probzero +=

alfa(m] [i] *beta[trans[m] [0]][i+1] *bpar[out[m][0]];
}
else{
probone +=

alfaim] [i]*betaltrans[m] [1]][i+1])*bpar{out(m](1]];
}

65

}
}
sysfb(i] = log (probone/probzero) ;

}
for(i=0;i<=numbits-1;i++){ /* truncate to prevent overflow */

if (sysfb[i]>17) {sysfb[i}=17;}
if (sysfbiil<-17) (sysfb[i)=-17;}

)

}
/* program to check errors */

int checkerr (int *d,float *sys,int numbits) {
int sum=0,1i;
for (i=0;i<numbits;i++) {

if(d[i] == 0){
if(sys[i]>=0){
sum++;
}
}
else(
if(sys{i)<=0){
sum++;
}
}
}
return sum;
}
void interfloat(float *data,int M, float **into, float **outof) {
int 1i,3;
int p{8)J={17,37,19,29,41,23,13,7},inc,ir,jr,eps;
/* this is from berrou ’95 */
inc = 0; /* load into matrix */

for(i=0;i<M;i++) {
for (j=0;j<M;j++){
into[i] [j] =datalinc++];
}
}
for(i=0;i<M;i++) { /* read out of the matrix */
for(3=0;3<M;j++){
ir = ((M/2 +1)*(i+3))%M;

eps = (i+3)%8;
jr = ((pleps]*(j+1))-1)%M;
outof[i] {j] = intolir)ijrl;
}
}
inc=0; /* read it back into the data stream */

for(i=0;1i<M;i++){
for(j=0;3j<M;j++)(
datalincl=outof(i](3j];
inc++;

}

}

void deinterfloat(float *data,int M, float **into, float **outof){
int i,3;

int p(8}={17,37,19,29,41,23,13,7),1inc,1ir,jr,eps;

66

/* this is from berrou ’'95 */
inc = 0; /* load into matrix */
for(i=0;i<M;i++){
for (3=0;3<M;:j++)(
outof{il[j] = datalinc++];
}
}
for(i=0;i<M;i++) {
for(j=0;j<M;j++) {
ir = ((M/2 +1)*(i+3))%M;
eps = (i+3)%8;
Jr = ((pleps]*(j+1))-1)%M;
into[ir] [jr) = outof[i][]j];

}
inc=0;
for (i=0;i<M;i++){
for(3=0;3<M;j++){
datalinc]=into[i][3j];

inc++;

}
}
}
void interint (int *data,int M,int **into,int **outof)
int i,3;
int p[8]={17,37,19,29,41,23,13,7},inc,ir,jr,eps;
/* this is from berrou ’95 */
inc = 0; /* load into matrix */

for(i=0;i<M;i++) {

for (3=0;3j<M;j++){

into[i] [j] =datalinc++];

}
}
for(i=0;1i<M;i++) {

for(3=0;3<M;j++){
ir = ((M/2 +1)*(i+3))%M;
eps = (i+3j)%8;
jr = ((pleps]l*(j+1))-1)%M;
outof[i][j] = intolir]([jr];

}
inc=0;
for(i=0;i<M;1i++){
for(j=0;3<M;j++)
datalinc)=outof[i] [j);
inc++;

}
}
void deinterint (int *data,int M, int **into, int **putof) {
int i,3;
int p[8]={17,37,19,29,41,23,13,7},inc,ir,jr,eps;
/* this is from berrou ‘95 */
inc = 0; /* load into matrix */
for (i=0;1i<M;i++){

for(j=0;j<M;j++){

outof (i) {j] = datalinc++];

67

}
}

for (i=0;i<M;i++){
for (j=0;3<M;3++){

ir = ((M/2 +1)*(i+3))%M;
eps = (i+3j)%8;

jr = ((pleps]*(j+1))-1)%M;
into[ir] [jr] = outofl[il[j]:

}
inc=0;
for (i=0;i<M;i++){
for (j=0;3<M;j++){
datal[incl=into[i])[3];
inc++;

}

}
int encode(int **g,int in,int *state,int mem)

/* program to help generate output and state transition matrices. it takes

the generator matrix, the input, and the state (in integer form)
returns the output value and the transition state (in *state).

memory

and

is size of number of delay units. To see how this is done look at

berrou et.al. */

int i, k, a[4]={0)},b[4]1=(0}, ¢ = 0, fb;
k = state([0]};
binstat(k, mem,a);
c += in;
for(i=1;i<=mem;i++) {

¢ += afi-1]* gl0][i]; /* determines feedback bit c */
}
fb = c%2;
c = fb;
for(i=1;i<=mem;i++) {
c += ali-1]1*gl1l)[1i]; /* ¢ is the outputed bit now.
}
c = c%2; /* now to get the next state */
for(i=0;i<mem-1;i++) { /* shifting previous state */
bli+l]}=a{i];
}
b[0] = fb; /* putting feedback bit into
first space */
state[0] = intstat (mem,b);
return c;

}
void binstat(int k,int m, int *mvect)
{ /* converts k into m bit row vector */
int 31;
for (i=m;i>0;1i--)
{
mvect [m-i}=(int) (k/ ((int)pow(2,1i-1))};
k -= mvect{m-i)*pow(2,1i-1);

}

int intstat{int m, int *mvect)

68

{ /* converts a m bit row vector, *mvect, into an integer k */
int i,k=0;
for(i=0;i<m;i++){
k += mvect([il* (int) (pow(2,m-i-1));
}

return k;

